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Abstract
The experimental results of Koehler and co-workers have indicated that vertices
(nodes) can in some cases play a dominant role in the dissipative process that
controls foam drainage. We present calculations of numerical constants that can
express the effect of the vertices, in a first approximation. Two limiting cases
are treated: Poiseuille flow, and free-boundary flow (in the sense that the stress
at the surface of the Plateau borders is everywhere zero). Consequences for
the relationship between average flow velocity and volume flow rate in steady
drainage are indicated.

1. Introduction

Foam drainage is the term used for the transport of liquid through a foam, driven by gravity or
pressure differences and resisted by dissipative forces. It is of direct practical importance to
industry. At a more basic level it raises interesting questions regarding the role and properties
of the surfaces that confine the liquid within the foam. To what extent are these liquid–
gas interfaces mobile? May they be considered as fixed boundaries for liquid transport
(the Poiseuille condition), expanding and contracting in response to pressure changes but
not moving laterally in response to shear stress in the liquid?

Most theories have adopted the model of Poiseuille flow, with little direct justification. In
such a model the Plateau borders constitute a network of channels for flow, and films play no
part in the liquid transport.

For relatively dry foams these channels meet in symmetric fourfold intersections (see
figure 1). This allows a theory to be developed in a straightforward way, leading to a foam
drainage equation which has interesting analytic and numerical solutions [2]. Evidence for
the validity of this model supports it at least semi-quantitatively in many cases, as described
below [3], and it has been applied extensively [4–7].

In particular, the forced drainage experiment imposes a steady downward flow under
gravity. The liquid fraction �l is also uniform, to within a good approximation, as found in
the much earlier work of Lemlich and co-workers [8] on steady drainage. The other quantities
of interest are the average velocity of flow v, and the volume flow rate Q. By definition these
are subject to

Q = Atv�l (1)

where At is the cross-sectional area of the vessel containing the foam.
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Figure 1. A single tetrahedral junction of Plateau borders. The radius of curvature of the Plateau
borders is equal to δ (as length L → ∞).

In practice v is often measured as the velocity of the front of the solitary wave that is
generated when a given flow is first imposed on the dry foam. The earliest experiments of this
kind [9] established a scaling law between v and Q:

v ∝ Q1/2 (2)

where the exponent was established to within about ten per cent. This result, later confirmed
for various detergent systems [10, 11] and protein foams [12, 13], was the spur to subsequent
theoretical analysis. The foam drainage equation based on Poiseuille flow was found to be
consistent with (2).

However, fresh experimental results obtained in 1999 [1] lead to a reappraisal of the model.
The new data, which were of greater extent and precision than previous results, indicated a
different power law:

v ∝ Q1/3. (3)

Koehler et al showed this to be consistent with an alternative model in which dissipation is
dominated by the vertices or nodes where the Plateau borders meet. The implication is that
there is plug flow rather than Poiseuille flow in the borders themselves.

While the earlier conclusions were based on data of a lesser accuracy, they had been
independently confirmed many times. There was therefore a sharp conflict of evidence, which
was soon resolved by the realization that different surfactants were used by the two groups [5].
The new experiments used the commercial detergent Dawn whereas the earlier work used
(mostly) Fairy Liquid. Not all dishwashing detergents are the same!

On closer examination, most of the experimental results deviate somewhat from the ideal
values 1/3 and 1/2 for the index which is at issue. They mostly lie between these extremes.
This calls for a combined model [12,14], and indeed further experimentation on a wide range
of surfactant systems which are better defined.

Now that the vertices are seen as important, it is useful to calculate the flow properties
associated with them. Here we present numerical calculations for the two limiting cases—
Poiseuille flow and free-boundary flow. Calculations for the Poiseuille case have been
previously reported by Pertsov et al [15], but not in a form readily amenable to comparison
with ours.
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The contribution of the vertices to the liquid fraction may also be calculated. Boltenhagen
and Pittet [16] have suggested the importance of vertex contributions to the liquid fraction in
drainage experiments. We would insist that this cannot be treated in isolation, since the effect
of vertex corrections to fluid flow is of the same order.

The general approach adopted here is that of Phelan et al [17] who addressed the calculation
of vertex corrections for electrical conductivity, which is closely analogous [18]. Whereas a
boundary integral method was employed in that case, here we use the computational fluid
dynamics package Fluent. This takes a meshed volume and applies a control-volume-based
technique to solve the equations of fluid motion for the given boundary conditions. After
the iteration process is complete, quantities such as the mass and volume flow rates may be
calculated.

As in the version of the analysis of electrical conductivity due to Phelan et al [17], we
shall express the effect of the contribution of the vertex in Poiseuille flow by incorporating
it in the adjoining Plateau borders, as described below. The relevant constants are therefore
effective lengths or length corrections for Plateau borders. In the case of free-boundary flow,
we shall calculate a resistance parameter, which is independent of the length of the adjoining
Plateau borders.

The constants will enable us to comment further on the comparison of theory and
experiment. Of itself, this adds no insight to the question of the factors which dictate the
behaviour of the surfaces, which remain puzzling. Surface viscosity has often been invoked as
the key property determining the boundary conditions [19,20], but this does not seem to have
been demonstrated. The true picture may be much more complicated.

2. Formalism

While it is obvious that the liquid fraction may be corrected for the vertex contribution by
attributing a slightly increased effective length to uniform Plateau borders, it is not so clear for
electrical or flow resistance. Accordingly the rationale will be sketched.

2.1. Poiseuille case

We are concerned with a fairly dry foam, in which narrow Plateau borders, of length L (not
always the same for all Plateau borders in the foam) and of width δ, meet in junctions which
are also of extent δ. The assumption δ � L underlies much of what is assumed below, without
always being explicitly stated. In the limit of a dry foam the borders may be represented as
lines, meeting at intersections where there is perfect tetrahedral symmetry. Unit line length is
then associated with a certain volume of liquid (of order δ2), a certain electrical conductance
(of order δ2) and a certain flow conductance (of order δ4), the ratio of volume flow to pressure
difference [18]. A body force due to gravity is equivalent to a pressure difference, in the usual
way. Of course, in the case of free boundaries this flow conductance is infinite.

The simple description fails at or close to the vertex. This may simply be ignored for
Poiseuille flow, on the grounds that the effect is negligible, being of higher order in the small
quantity δ/L. Indeed, that follows explicitly from the present analysis.

Recall the linear relationship between flow rate Q and pressure difference �p over a length
L of a single Plateau border:

Q = R−1
pb

�p

L
where Rpb = χη

A2
pb

(4)
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is the flow resistance per unit length of a single Plateau border in Poiseuille flow. Here the
cross-sectional area of the border is denoted by Apb, χ ≈ 49 is a further geometrical factor [8]
and η is the liquid viscosity.

Now that we wish to retain vertex effects, at least in a first approximation, we account
for them as follows. Each vertex is represented in the calculation of liquid volume, electrical
resistance and flow resistance by the addition of a corresponding length correction to each
adjoining border. This is indicated schematically in figure 2. In the case of either flow or
electrical resistance, this length correction is found to shorten the Plateau borders. The proof
of the validity of this procedure rests on symmetry—we will couch it in terms appropriate to
the case of liquid flow.

Figure 2. A schematic representation of the method of length correction. Note that for a volume
correction �L is positive, while for a resistance calculation it is negative.

The flow properties of a vertex may be expressed by the relation (assumed linear) between
four flow rates qi and four pressures pi , at the end-points of four equal Plateau borders of
length L, as in figure 1. We write

�q = C �p (5)

so flow conductance is represented by the 4 × 4 symmetric matrix C. Tetrahedral symmetry
dictates that it has one non-degenerate eigenvalue λ1 and a triply degenerate one λ2. The first
is associated with equal pressures at the end of each arm: clearly this gives zero flow. Only a
single finite eigenvalue remains.

Without loss of generality we can represent the elements of C as

Cij = c

(
δij − 1

4

)
(6)

for which λ1 = 0 and λ2 = c.
Note that when the pi are all equal, each qi = 0 as required. If p1 = −p2, p3 = p4 = 0,

we have a situation where liquid flows into one arm and out of another, with no flow
in the remaining two arms. In this case (6) gives q1 = −q2 = p1c, q3 = q4 = 0.
For the calculations described below we shall use p2 = p3 = p4 = −p1/3 which has
q2 = q3 = q4 = −q1/3 = −cp1/3; that is, flow into a single arm and equal flow out of the
other three.

In each case the constant c characterizes the conductance properties of the vertex. We
define the resistance parameter R of the vertex to be 1/c. But how does c depend upon L?

As the length L of the arms is taken to infinity, the resistance R tends asymptotically to a
linear form, because a resistance proportional to the change in L is being added to each arm,
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consistent with (4). This can be made particularly obvious by appeal to the second of the cases
discussed above, for flow into a single arm and out of only one other. Hence

Rpb = d

dL

(
1

c

)
. (7)

A plot of 1/c against L will therefore tend asymptotically to a straight line; however, this line
will not pass through the origin. Instead, its intercept with the L axis is the effective length
correction. That is,

R = Rvertex + LRpb (8)

or

R = Rpb(L + �L). (9)

The correction �L has the dimensions of length, but cannot depend upon L and is
proportional to δ. We therefore non-dimensionalize with δ and plot

R

Rpbδ
= �p

Q

A2
pb

ηχδ
(10)

in terms of L/δ. Once the length correction �L is established by computation, the length
correction constant �L/δ can be used in a theory which otherwise ignores the vertex.

2.2. Free-boundary case

We shall solve the free-boundary case in a similar way here, but, since the line resistance is
zero in this case, we must express the results in a form other than that of a length correction.
We write the solution as a resistance parameter R for the vertex, which is independent of L.
The constant R characterizes the flow through the vertex.

Dimensionally (essentially as argued in [1]), the flow conductance is of order δ3, so R is
of order δ−3 in this case. Whereas in the Poiseuille case we found a correction to a known
resistance, here it stands on its own.

Therefore we write the resistance parameter as

R = rvηδ−3 (11)

where the constant rv will be found from the numerical calculations:

rv = �p δ3

Qη
. (12)

3. Computation of length corrections

The Surface Evolver package [21] was used to generate the tetrahedral vertex for the
computations, with δ = 2 × 10−4 m. After three levels of refinement the junction is
approximated by a tessellation of 3584 facets. It is adapted [22] to a format recognized
by Gambit, the mesh-creating part of the Fluent software. Difficulties arise when Gambit is
used to import a further level of Evolver refinement. The mesh is finally imported into Fluent,
where the boundary conditions are set. We treat the fluid in the junction as water.
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Figure 3. In the Poiseuille case, the straight-line fit through the numerical data for the flow
resistance gives a length correction of �L/δ 
 1.01/1.04 
 0.97.

3.1. Poiseuille flow

The computations used the configuration of figure 2 with p1 = 37.5 kg m−1 s−2. The flow
rate was evaluated from the numerical solution: Q = 1.70 × 10−11 m3 s−1. The scaled flow
resistance (10) is plotted against arm length L in figure 3, the length being represented by the
scaled form L/δ.

The asymptotic linear form, given by

R

Rpbδ
= 1.04

L

δ
− 1.01 (13)

is rapidly approached. (Note the slight numerical inaccuracy—the slope should be equal to
one.) In the absence of the divergence at small L, when the junction becomes important, the
graph shows that R = 0 when L ≈ 0.97δ. This corresponds to a length correction constant of

�L

δ
≈ 0.97. (14)

3.2. Free-boundary case

This is computed in a similar way; the difference arises because we must express the boundary
conditions in terms of a fluid velocity at the inlet. Due to convergence problems, our numerical
solutions have been restricted to inflow velocities of the order of 1 m s−1, giving a Reynolds
number of the order of 102 which is hardly in the creeping flow regime upon which standard
foam drainage theory is based. Nevertheless, we believe the value found for rv is reliable,
since little variation was found for a range of boundary conditions.

We see, as expected, flow of constant velocity v in the upper arm of the tetrahedral vertex,
and flow with velocity v/3 in each of the lower arms. The flow rate is calculated and the
pressure in each of the upper and lower arms found. (This latter quantity tends asymptotically
to a constant in each arm, a short distance from the vertex.) The constant rv is found from
(12), for a range of pressure differences and corresponding flow rates, to be rv ≈ 250 ± 25.
The uncertainty is due to numerical error in the calculations.
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4. Discussion

The incorporation of corrections based on the calculated constants, and comparison with
experiment, should be straightforward. However, this requires careful consideration of the
parameters defining the experimental conditions (e.g. viscosity). Preliminary studies suggest
that in the Poiseuille case the effect of the length correction is, as expected, to slightly reduce
the power-law exponent from the value of 0.5. In the case of free-boundary flow, it should be
possible to supply the prefactor necessary to make a fully quantitative comparison of drainage
theory with the experimental data of Koehler et al [1,14]. Such comparisons will be presented
in a further paper.

5. Conclusions

The evaluation of the constants necessary to make a first approximation to vertex effects moves
the drainage theory a step forward. However, caution has always been advised in doing so.
There remain yet more effects to be considered, including the distortion of the structure, as
the foam becomes wetter. Furthermore, there is as yet little understanding of the underlying
physics and chemistry that dictates the two limiting behaviours considered here.
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